3.1.66 \(\int (\pi +c^2 \pi x^2)^{3/2} (a+b \text {arcsinh}(c x)) \, dx\) [66]

3.1.66.1 Optimal result
3.1.66.2 Mathematica [A] (verified)
3.1.66.3 Rubi [A] (verified)
3.1.66.4 Maple [A] (verified)
3.1.66.5 Fricas [F]
3.1.66.6 Sympy [A] (verification not implemented)
3.1.66.7 Maxima [F(-2)]
3.1.66.8 Giac [F(-2)]
3.1.66.9 Mupad [F(-1)]

3.1.66.1 Optimal result

Integrand size = 23, antiderivative size = 111 \[ \int \left (\pi +c^2 \pi x^2\right )^{3/2} (a+b \text {arcsinh}(c x)) \, dx=-\frac {5}{16} b c \pi ^{3/2} x^2-\frac {1}{16} b c^3 \pi ^{3/2} x^4+\frac {3}{8} \pi x \sqrt {\pi +c^2 \pi x^2} (a+b \text {arcsinh}(c x))+\frac {1}{4} x \left (\pi +c^2 \pi x^2\right )^{3/2} (a+b \text {arcsinh}(c x))+\frac {3 \pi ^{3/2} (a+b \text {arcsinh}(c x))^2}{16 b c} \]

output
-5/16*b*c*Pi^(3/2)*x^2-1/16*b*c^3*Pi^(3/2)*x^4+1/4*x*(Pi*c^2*x^2+Pi)^(3/2) 
*(a+b*arcsinh(c*x))+3/16*Pi^(3/2)*(a+b*arcsinh(c*x))^2/b/c+3/8*Pi*x*(a+b*a 
rcsinh(c*x))*(Pi*c^2*x^2+Pi)^(1/2)
 
3.1.66.2 Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.00 \[ \int \left (\pi +c^2 \pi x^2\right )^{3/2} (a+b \text {arcsinh}(c x)) \, dx=\frac {\pi ^{3/2} \left (80 a c x \sqrt {1+c^2 x^2}+32 a c^3 x^3 \sqrt {1+c^2 x^2}+24 b \text {arcsinh}(c x)^2-16 b \cosh (2 \text {arcsinh}(c x))-b \cosh (4 \text {arcsinh}(c x))+4 \text {arcsinh}(c x) (12 a+8 b \sinh (2 \text {arcsinh}(c x))+b \sinh (4 \text {arcsinh}(c x)))\right )}{128 c} \]

input
Integrate[(Pi + c^2*Pi*x^2)^(3/2)*(a + b*ArcSinh[c*x]),x]
 
output
(Pi^(3/2)*(80*a*c*x*Sqrt[1 + c^2*x^2] + 32*a*c^3*x^3*Sqrt[1 + c^2*x^2] + 2 
4*b*ArcSinh[c*x]^2 - 16*b*Cosh[2*ArcSinh[c*x]] - b*Cosh[4*ArcSinh[c*x]] + 
4*ArcSinh[c*x]*(12*a + 8*b*Sinh[2*ArcSinh[c*x]] + b*Sinh[4*ArcSinh[c*x]])) 
)/(128*c)
 
3.1.66.3 Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.16, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {6201, 244, 2009, 6200, 15, 6198}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (\pi c^2 x^2+\pi \right )^{3/2} (a+b \text {arcsinh}(c x)) \, dx\)

\(\Big \downarrow \) 6201

\(\displaystyle \frac {3}{4} \pi \int \sqrt {c^2 \pi x^2+\pi } (a+b \text {arcsinh}(c x))dx-\frac {1}{4} \pi ^{3/2} b c \int x \left (c^2 x^2+1\right )dx+\frac {1}{4} x \left (\pi c^2 x^2+\pi \right )^{3/2} (a+b \text {arcsinh}(c x))\)

\(\Big \downarrow \) 244

\(\displaystyle \frac {3}{4} \pi \int \sqrt {c^2 \pi x^2+\pi } (a+b \text {arcsinh}(c x))dx-\frac {1}{4} \pi ^{3/2} b c \int \left (c^2 x^3+x\right )dx+\frac {1}{4} x \left (\pi c^2 x^2+\pi \right )^{3/2} (a+b \text {arcsinh}(c x))\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {3}{4} \pi \int \sqrt {c^2 \pi x^2+\pi } (a+b \text {arcsinh}(c x))dx+\frac {1}{4} x \left (\pi c^2 x^2+\pi \right )^{3/2} (a+b \text {arcsinh}(c x))-\frac {1}{4} \pi ^{3/2} b c \left (\frac {c^2 x^4}{4}+\frac {x^2}{2}\right )\)

\(\Big \downarrow \) 6200

\(\displaystyle \frac {3}{4} \pi \left (\frac {1}{2} \sqrt {\pi } \int \frac {a+b \text {arcsinh}(c x)}{\sqrt {c^2 x^2+1}}dx-\frac {1}{2} \sqrt {\pi } b c \int xdx+\frac {1}{2} x \sqrt {\pi c^2 x^2+\pi } (a+b \text {arcsinh}(c x))\right )+\frac {1}{4} x \left (\pi c^2 x^2+\pi \right )^{3/2} (a+b \text {arcsinh}(c x))-\frac {1}{4} \pi ^{3/2} b c \left (\frac {c^2 x^4}{4}+\frac {x^2}{2}\right )\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {3}{4} \pi \left (\frac {1}{2} \sqrt {\pi } \int \frac {a+b \text {arcsinh}(c x)}{\sqrt {c^2 x^2+1}}dx+\frac {1}{2} x \sqrt {\pi c^2 x^2+\pi } (a+b \text {arcsinh}(c x))-\frac {1}{4} \sqrt {\pi } b c x^2\right )+\frac {1}{4} x \left (\pi c^2 x^2+\pi \right )^{3/2} (a+b \text {arcsinh}(c x))-\frac {1}{4} \pi ^{3/2} b c \left (\frac {c^2 x^4}{4}+\frac {x^2}{2}\right )\)

\(\Big \downarrow \) 6198

\(\displaystyle \frac {1}{4} x \left (\pi c^2 x^2+\pi \right )^{3/2} (a+b \text {arcsinh}(c x))+\frac {3}{4} \pi \left (\frac {1}{2} x \sqrt {\pi c^2 x^2+\pi } (a+b \text {arcsinh}(c x))+\frac {\sqrt {\pi } (a+b \text {arcsinh}(c x))^2}{4 b c}-\frac {1}{4} \sqrt {\pi } b c x^2\right )-\frac {1}{4} \pi ^{3/2} b c \left (\frac {c^2 x^4}{4}+\frac {x^2}{2}\right )\)

input
Int[(Pi + c^2*Pi*x^2)^(3/2)*(a + b*ArcSinh[c*x]),x]
 
output
-1/4*(b*c*Pi^(3/2)*(x^2/2 + (c^2*x^4)/4)) + (x*(Pi + c^2*Pi*x^2)^(3/2)*(a 
+ b*ArcSinh[c*x]))/4 + (3*Pi*(-1/4*(b*c*Sqrt[Pi]*x^2) + (x*Sqrt[Pi + c^2*P 
i*x^2]*(a + b*ArcSinh[c*x]))/2 + (Sqrt[Pi]*(a + b*ArcSinh[c*x])^2)/(4*b*c) 
))/4
 

3.1.66.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 244
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Expand 
Integrand[(c*x)^m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && IGtQ[p 
, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6198
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_ 
Symbol] :> Simp[(1/(b*c*(n + 1)))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*( 
a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c 
^2*d] && NeQ[n, -1]
 

rule 6200
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_ 
Symbol] :> Simp[x*Sqrt[d + e*x^2]*((a + b*ArcSinh[c*x])^n/2), x] + (Simp[(1 
/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]]   Int[(a + b*ArcSinh[c*x])^n/Sq 
rt[1 + c^2*x^2], x], x] - Simp[b*c*(n/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2* 
x^2]]   Int[x*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e 
}, x] && EqQ[e, c^2*d] && GtQ[n, 0]
 

rule 6201
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), 
x_Symbol] :> Simp[x*(d + e*x^2)^p*((a + b*ArcSinh[c*x])^n/(2*p + 1)), x] + 
(Simp[2*d*(p/(2*p + 1))   Int[(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^n, x 
], x] - Simp[b*c*(n/(2*p + 1))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]   Int[x* 
(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, 
b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0]
 
3.1.66.4 Maple [A] (verified)

Time = 0.19 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.37

method result size
default \(\frac {x \left (\pi \,c^{2} x^{2}+\pi \right )^{\frac {3}{2}} a}{4}+\frac {3 a \pi x \sqrt {\pi \,c^{2} x^{2}+\pi }}{8}+\frac {3 a \,\pi ^{2} \ln \left (\frac {\pi \,c^{2} x}{\sqrt {\pi \,c^{2}}}+\sqrt {\pi \,c^{2} x^{2}+\pi }\right )}{8 \sqrt {\pi \,c^{2}}}+\frac {b \,\pi ^{\frac {3}{2}} \left (4 \,\operatorname {arcsinh}\left (c x \right ) \sqrt {c^{2} x^{2}+1}\, x^{3} c^{3}-c^{4} x^{4}+10 \,\operatorname {arcsinh}\left (c x \right ) c x \sqrt {c^{2} x^{2}+1}-5 c^{2} x^{2}+3 \operatorname {arcsinh}\left (c x \right )^{2}-4\right )}{16 c}\) \(152\)
parts \(\frac {x \left (\pi \,c^{2} x^{2}+\pi \right )^{\frac {3}{2}} a}{4}+\frac {3 a \pi x \sqrt {\pi \,c^{2} x^{2}+\pi }}{8}+\frac {3 a \,\pi ^{2} \ln \left (\frac {\pi \,c^{2} x}{\sqrt {\pi \,c^{2}}}+\sqrt {\pi \,c^{2} x^{2}+\pi }\right )}{8 \sqrt {\pi \,c^{2}}}+\frac {b \,\pi ^{\frac {3}{2}} \left (4 \,\operatorname {arcsinh}\left (c x \right ) \sqrt {c^{2} x^{2}+1}\, x^{3} c^{3}-c^{4} x^{4}+10 \,\operatorname {arcsinh}\left (c x \right ) c x \sqrt {c^{2} x^{2}+1}-5 c^{2} x^{2}+3 \operatorname {arcsinh}\left (c x \right )^{2}-4\right )}{16 c}\) \(152\)

input
int((Pi*c^2*x^2+Pi)^(3/2)*(a+b*arcsinh(c*x)),x,method=_RETURNVERBOSE)
 
output
1/4*x*(Pi*c^2*x^2+Pi)^(3/2)*a+3/8*a*Pi*x*(Pi*c^2*x^2+Pi)^(1/2)+3/8*a*Pi^2* 
ln(Pi*c^2*x/(Pi*c^2)^(1/2)+(Pi*c^2*x^2+Pi)^(1/2))/(Pi*c^2)^(1/2)+1/16*b*Pi 
^(3/2)*(4*arcsinh(c*x)*(c^2*x^2+1)^(1/2)*x^3*c^3-c^4*x^4+10*arcsinh(c*x)*c 
*x*(c^2*x^2+1)^(1/2)-5*c^2*x^2+3*arcsinh(c*x)^2-4)/c
 
3.1.66.5 Fricas [F]

\[ \int \left (\pi +c^2 \pi x^2\right )^{3/2} (a+b \text {arcsinh}(c x)) \, dx=\int { {\left (\pi + \pi c^{2} x^{2}\right )}^{\frac {3}{2}} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )} \,d x } \]

input
integrate((pi*c^2*x^2+pi)^(3/2)*(a+b*arcsinh(c*x)),x, algorithm="fricas")
 
output
integral(sqrt(pi + pi*c^2*x^2)*(pi*a*c^2*x^2 + pi*a + (pi*b*c^2*x^2 + pi*b 
)*arcsinh(c*x)), x)
 
3.1.66.6 Sympy [A] (verification not implemented)

Time = 1.58 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.67 \[ \int \left (\pi +c^2 \pi x^2\right )^{3/2} (a+b \text {arcsinh}(c x)) \, dx=\begin {cases} \frac {\pi ^{\frac {3}{2}} a c^{2} x^{3} \sqrt {c^{2} x^{2} + 1}}{4} + \frac {5 \pi ^{\frac {3}{2}} a x \sqrt {c^{2} x^{2} + 1}}{8} + \frac {3 \pi ^{\frac {3}{2}} a \operatorname {asinh}{\left (c x \right )}}{8 c} - \frac {\pi ^{\frac {3}{2}} b c^{3} x^{4}}{16} + \frac {\pi ^{\frac {3}{2}} b c^{2} x^{3} \sqrt {c^{2} x^{2} + 1} \operatorname {asinh}{\left (c x \right )}}{4} - \frac {5 \pi ^{\frac {3}{2}} b c x^{2}}{16} + \frac {5 \pi ^{\frac {3}{2}} b x \sqrt {c^{2} x^{2} + 1} \operatorname {asinh}{\left (c x \right )}}{8} + \frac {3 \pi ^{\frac {3}{2}} b \operatorname {asinh}^{2}{\left (c x \right )}}{16 c} & \text {for}\: c \neq 0 \\\pi ^{\frac {3}{2}} a x & \text {otherwise} \end {cases} \]

input
integrate((pi*c**2*x**2+pi)**(3/2)*(a+b*asinh(c*x)),x)
 
output
Piecewise((pi**(3/2)*a*c**2*x**3*sqrt(c**2*x**2 + 1)/4 + 5*pi**(3/2)*a*x*s 
qrt(c**2*x**2 + 1)/8 + 3*pi**(3/2)*a*asinh(c*x)/(8*c) - pi**(3/2)*b*c**3*x 
**4/16 + pi**(3/2)*b*c**2*x**3*sqrt(c**2*x**2 + 1)*asinh(c*x)/4 - 5*pi**(3 
/2)*b*c*x**2/16 + 5*pi**(3/2)*b*x*sqrt(c**2*x**2 + 1)*asinh(c*x)/8 + 3*pi* 
*(3/2)*b*asinh(c*x)**2/(16*c), Ne(c, 0)), (pi**(3/2)*a*x, True))
 
3.1.66.7 Maxima [F(-2)]

Exception generated. \[ \int \left (\pi +c^2 \pi x^2\right )^{3/2} (a+b \text {arcsinh}(c x)) \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((pi*c^2*x^2+pi)^(3/2)*(a+b*arcsinh(c*x)),x, algorithm="maxima")
 
output
Exception raised: RuntimeError >> ECL says: expt: undefined: 0 to a negati 
ve exponent.
 
3.1.66.8 Giac [F(-2)]

Exception generated. \[ \int \left (\pi +c^2 \pi x^2\right )^{3/2} (a+b \text {arcsinh}(c x)) \, dx=\text {Exception raised: TypeError} \]

input
integrate((pi*c^2*x^2+pi)^(3/2)*(a+b*arcsinh(c*x)),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.1.66.9 Mupad [F(-1)]

Timed out. \[ \int \left (\pi +c^2 \pi x^2\right )^{3/2} (a+b \text {arcsinh}(c x)) \, dx=\int \left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,{\left (\Pi \,c^2\,x^2+\Pi \right )}^{3/2} \,d x \]

input
int((a + b*asinh(c*x))*(Pi + Pi*c^2*x^2)^(3/2),x)
 
output
int((a + b*asinh(c*x))*(Pi + Pi*c^2*x^2)^(3/2), x)